- For educators
- English (US)
- English (India)
- English (UK)
- Greek Alphabet
Your solution’s ready to go!
Our expert help has broken down your problem into an easy-to-learn solution you can count on.
Question: What is the purpose of a control group in an experiment? What would the control groups be for each of your designed experiments in this exercise? Question 2 Describe the data that would be recorded in each of the experiments you designed. Would it be classified as quantitative or qualitative data?
The purpose of a control group in an experiment is to provide a baseline against which the experimen...
Not the question you’re looking for?
Post any question and get expert help quickly.
- Science Notes Posts
- Contact Science Notes
- Todd Helmenstine Biography
- Anne Helmenstine Biography
- Free Printable Periodic Tables (PDF and PNG)
- Periodic Table Wallpapers
- Interactive Periodic Table
- Periodic Table Posters
- Science Experiments for Kids
- How to Grow Crystals
- Chemistry Projects
- Fire and Flames Projects
- Holiday Science
- Chemistry Problems With Answers
- Physics Problems
- Unit Conversion Example Problems
- Chemistry Worksheets
- Biology Worksheets
- Periodic Table Worksheets
- Physical Science Worksheets
- Science Lab Worksheets
- My Amazon Books
Control Group Definition and Examples
The control group is the set of subjects that does not receive the treatment in a study. In other words, it is the group where the independent variable is held constant. This is important because the control group is a baseline for measuring the effects of a treatment in an experiment or study. A controlled experiment is one which includes one or more control groups.
- The experimental group experiences a treatment or change in the independent variable. In contrast, the independent variable is constant in the control group.
- A control group is important because it allows meaningful comparison. The researcher compares the experimental group to it to assess whether or not there is a relationship between the independent and dependent variable and the magnitude of the effect.
- There are different types of control groups. A controlled experiment has one more control group.
Control Group vs Experimental Group
The only difference between the control group and experimental group is that subjects in the experimental group receive the treatment being studied, while participants in the control group do not. Otherwise, all other variables between the two groups are the same.
Control Group vs Control Variable
A control group is not the same thing as a control variable. A control variable or controlled variable is any factor that is held constant during an experiment. Examples of common control variables include temperature, duration, and sample size. The control variables are the same for both the control and experimental groups.
Types of Control Groups
There are different types of control groups:
- Placebo group : A placebo group receives a placebo , which is a fake treatment that resembles the treatment in every respect except for the active ingredient. Both the placebo and treatment may contain inactive ingredients that produce side effects. Without a placebo group, these effects might be attributed to the treatment.
- Positive control group : A positive control group has conditions that guarantee a positive test result. The positive control group demonstrates an experiment is capable of producing a positive result. Positive controls help researchers identify problems with an experiment.
- Negative control group : A negative control group consists of subjects that are not exposed to a treatment. For example, in an experiment looking at the effect of fertilizer on plant growth, the negative control group receives no fertilizer.
- Natural control group : A natural control group usually is a set of subjects who naturally differ from the experimental group. For example, if you compare the effects of a treatment on women who have had children, the natural control group includes women who have not had children. Non-smokers are a natural control group in comparison to smokers.
- Randomized control group : The subjects in a randomized control group are randomly selected from a larger pool of subjects. Often, subjects are randomly assigned to either the control or experimental group. Randomization reduces bias in an experiment. There are different methods of randomly assigning test subjects.
Control Group Examples
Here are some examples of different control groups in action:
Negative Control and Placebo Group
For example, consider a study of a new cancer drug. The experimental group receives the drug. The placebo group receives a placebo, which contains the same ingredients as the drug formulation, minus the active ingredient. The negative control group receives no treatment. The reason for including the negative group is because the placebo group experiences some level of placebo effect, which is a response to experiencing some form of false treatment.
Positive and Negative Controls
For example, consider an experiment looking at whether a new drug kills bacteria. The experimental group exposes bacterial cultures to the drug. If the group survives, the drug is ineffective. If the group dies, the drug is effective.
The positive control group has a culture of bacteria that carry a drug resistance gene. If the bacteria survive drug exposure (as intended), then it shows the growth medium and conditions allow bacterial growth. If the positive control group dies, it indicates a problem with the experimental conditions. A negative control group of bacteria lacking drug resistance should die. If the negative control group survives, something is wrong with the experimental conditions.
- Bailey, R. A. (2008). Design of Comparative Experiments . Cambridge University Press. ISBN 978-0-521-68357-9.
- Chaplin, S. (2006). “The placebo response: an important part of treatment”. Prescriber . 17 (5): 16–22. doi: 10.1002/psb.344
- Hinkelmann, Klaus; Kempthorne, Oscar (2008). Design and Analysis of Experiments, Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9.
- Pithon, M.M. (2013). “Importance of the control group in scientific research.” Dental Press J Orthod . 18 (6):13-14. doi: 10.1590/s2176-94512013000600003
- Stigler, Stephen M. (1992). “A Historical View of Statistical Concepts in Psychology and Educational Research”. American Journal of Education . 101 (1): 60–70. doi: 10.1086/444032
Related Posts
Controlled Experiment
Saul McLeod, PhD
Editor-in-Chief for Simply Psychology
BSc (Hons) Psychology, MRes, PhD, University of Manchester
Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.
Learn about our Editorial Process
Olivia Guy-Evans, MSc
Associate Editor for Simply Psychology
BSc (Hons) Psychology, MSc Psychology of Education
Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.
This is when a hypothesis is scientifically tested.
In a controlled experiment, an independent variable (the cause) is systematically manipulated, and the dependent variable (the effect) is measured; any extraneous variables are controlled.
The researcher can operationalize (i.e., define) the studied variables so they can be objectively measured. The quantitative data can be analyzed to see if there is a difference between the experimental and control groups.
What is the control group?
In experiments scientists compare a control group and an experimental group that are identical in all respects, except for one difference – experimental manipulation.
Unlike the experimental group, the control group is not exposed to the independent variable under investigation and so provides a baseline against which any changes in the experimental group can be compared.
Since experimental manipulation is the only difference between the experimental and control groups, we can be sure that any differences between the two are due to experimental manipulation rather than chance.
Randomly allocating participants to independent variable groups means that all participants should have an equal chance of participating in each condition.
The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.
What are extraneous variables?
The researcher wants to ensure that the manipulation of the independent variable has changed the changes in the dependent variable.
Hence, all the other variables that could affect the dependent variable to change must be controlled. These other variables are called extraneous or confounding variables.
Extraneous variables should be controlled were possible, as they might be important enough to provide alternative explanations for the effects.
In practice, it would be difficult to control all the variables in a child’s educational achievement. For example, it would be difficult to control variables that have happened in the past.
A researcher can only control the current environment of participants, such as time of day and noise levels.
Why conduct controlled experiments?
Scientists use controlled experiments because they allow for precise control of extraneous and independent variables. This allows a cause-and-effect relationship to be established.
Controlled experiments also follow a standardized step-by-step procedure. This makes it easy for another researcher to replicate the study.
Key Terminology
Experimental group.
The group being treated or otherwise manipulated for the sake of the experiment.
Control Group
They receive no treatment and are used as a comparison group.
Ecological validity
The degree to which an investigation represents real-life experiences.
Experimenter effects
These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.
Demand characteristics
The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).
Independent variable (IV)
The variable the experimenter manipulates (i.e., changes) – is assumed to have a direct effect on the dependent variable.
Dependent variable (DV)
Variable the experimenter measures. This is the outcome (i.e., the result) of a study.
Extraneous variables (EV)
All variables that are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.
Confounding variables
Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.
Random Allocation
Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of participating in each condition.
Order effects
Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:
(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;
(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.
What is the control in an experiment?
In an experiment , the control is a standard or baseline group not exposed to the experimental treatment or manipulation. It serves as a comparison group to the experimental group, which does receive the treatment or manipulation.
The control group helps to account for other variables that might influence the outcome, allowing researchers to attribute differences in results more confidently to the experimental treatment.
Establishing a cause-and-effect relationship between the manipulated variable (independent variable) and the outcome (dependent variable) is critical in establishing a cause-and-effect relationship between the manipulated variable.
What is the purpose of controlling the environment when testing a hypothesis?
Controlling the environment when testing a hypothesis aims to eliminate or minimize the influence of extraneous variables. These variables other than the independent variable might affect the dependent variable, potentially confounding the results.
By controlling the environment, researchers can ensure that any observed changes in the dependent variable are likely due to the manipulation of the independent variable, not other factors.
This enhances the experiment’s validity, allowing for more accurate conclusions about cause-and-effect relationships.
It also improves the experiment’s replicability, meaning other researchers can repeat the experiment under the same conditions to verify the results.
Why are hypotheses important to controlled experiments?
Hypotheses are crucial to controlled experiments because they provide a clear focus and direction for the research. A hypothesis is a testable prediction about the relationship between variables.
It guides the design of the experiment, including what variables to manipulate (independent variables) and what outcomes to measure (dependent variables).
The experiment is then conducted to test the validity of the hypothesis. If the results align with the hypothesis, they provide evidence supporting it.
The hypothesis may be revised or rejected if the results do not align. Thus, hypotheses are central to the scientific method, driving the iterative inquiry, experimentation, and knowledge advancement process.
What is the experimental method?
The experimental method is a systematic approach in scientific research where an independent variable is manipulated to observe its effect on a dependent variable, under controlled conditions.
- Science, Tech, Math ›
- Chemistry ›
The Difference Between Control Group and Experimental Group
- Chemical Laws
- Periodic Table
- Projects & Experiments
- Scientific Method
- Biochemistry
- Physical Chemistry
- Medical Chemistry
- Chemistry In Everyday Life
- Famous Chemists
- Activities for Kids
- Abbreviations & Acronyms
- Weather & Climate
- Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
- B.A., Physics and Mathematics, Hastings College
In an experiment , data from an experimental group is compared with data from a control group. These two groups should be identical in every respect except one: the difference between a control group and an experimental group is that the independent variable is changed for the experimental group, but is held constant in the control group.
Key Takeaways: Control vs. Experimental Group
- The control group and experimental group are compared against each other in an experiment. The only difference between the two groups is that the independent variable is changed in the experimental group. The independent variable is "controlled", or held constant, in the control group.
- A single experiment may include multiple experimental groups, which may all be compared against the control group.
- The purpose of having a control is to rule out other factors which may influence the results of an experiment. Not all experiments include a control group, but those that do are called "controlled experiments."
- A placebo may also be used in an experiment. A placebo isn't a substitute for a control group because subjects exposed to a placebo may experience effects from the belief they are being tested; this itself is known as the placebo effect.
What Are Is an Experimental Group in Experiment Design?
An experimental group is a test sample or the group that receives an experimental procedure. This group is exposed to changes in the independent variable being tested. The values of the independent variable and the impact on the dependent variable are recorded. An experiment may include multiple experimental groups at one time.
A control group is a group separated from the rest of the experiment such that the independent variable being tested cannot influence the results. This isolates the independent variable's effects on the experiment and can help rule out alternative explanations of the experimental results.
While all experiments have an experimental group, not all experiments require a control group. Controls are extremely useful where the experimental conditions are complex and difficult to isolate. Experiments that use control groups are called controlled experiments .
A Simple Example of a Controlled Experiment
A simple example of a controlled experiment may be used to determine whether or not plants need to be watered to live. The control group would be plants that are not watered. The experimental group would consist of plants that receive water. A clever scientist would wonder whether too much watering might kill the plants and would set up several experimental groups, each receiving a different amount of water.
Sometimes setting up a controlled experiment can be confusing. For example, a scientist may wonder whether or not a species of bacteria needs oxygen in order to live. To test this, cultures of bacteria may be left in the air, while other cultures are placed in a sealed container of nitrogen (the most common component of air) or deoxygenated air (which likely contained extra carbon dioxide). Which container is the control? Which is the experimental group?
Control Groups and Placebos
The most common type of control group is one held at ordinary conditions so it doesn't experience a changing variable. For example, If you want to explore the effect of salt on plant growth, the control group would be a set of plants not exposed to salt, while the experimental group would receive the salt treatment. If you want to test whether the duration of light exposure affects fish reproduction, the control group would be exposed to a "normal" number of hours of light, while the duration would change for the experimental group.
Experiments involving human subjects can be much more complex. If you're testing whether a drug is effective or not, for example, members of a control group may expect they will not be unaffected. To prevent skewing the results, a placebo may be used. A placebo is a substance that doesn't contain an active therapeutic agent. If a control group takes a placebo, participants don't know whether they are being treated or not, so they have the same expectations as members of the experimental group.
However, there is also the placebo effect to consider. Here, the recipient of the placebo experiences an effect or improvement because she believes there should be an effect. Another concern with a placebo is that it's not always easy to formulate one that truly free of active ingredients. For example, if a sugar pill is given as a placebo, there's a chance the sugar will affect the outcome of the experiment.
Positive and Negative Controls
Positive and negative controls are two other types of control groups:
- Positive control groups are control groups in which the conditions guarantee a positive result. Positive control groups are effective to show the experiment is functioning as planned.
- Negative control groups are control groups in which conditions produce a negative outcome. Negative control groups help identify outside influences which may be present that were not unaccounted for, such as contaminants.
- Bailey, R. A. (2008). Design of Comparative Experiments . Cambridge University Press. ISBN 978-0-521-68357-9.
- Chaplin, S. (2006). "The placebo response: an important part of treatment". Prescriber : 16–22. doi: 10.1002/psb.344
- Hinkelmann, Klaus; Kempthorne, Oscar (2008). Design and Analysis of Experiments, Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9.
- What is the Difference Between Molarity and Molality?
- The Difference Between Intensive and Extensive Properties
- The Difference Between Homogeneous and Heterogeneous Mixtures
- Examples of Polar and Nonpolar Molecules
- How to Draw a Lewis Structure
- Ionic vs. Covalent Bonds: How Are They Different?
- How to Calculate Density of a Gas
- How to Balance Chemical Equations
- What Is Alum and How Is It Used?
- The Visible Spectrum: Wavelengths and Colors
- Examples of Physical Changes
- Chemistry Glassware Types, Names and Uses
- Fun and Interesting Chemistry Facts
- Table of Electrical Resistivity and Conductivity
- Molarity Definition in Chemistry
- Chemical Properties of Matter
IMAGES
VIDEO
COMMENTS
A control group in a scientific experiment is a group separated from the rest of the experiment, where the independent variable being tested cannot influence the results. This isolates the independent variable's effects on the experiment and can help rule out alternative explanations of the experimental results.
A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn't receive the experimental treatment.. However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group's outcomes before and after a treatment (instead of comparing outcomes between different groups).
What is the purpose of a control group in an experiment? What would the control groups be for each of your designed experiments in this exercise? Question 2 Describe the data that would be recorded in each of the experiments you designed. Would it be classified as quantitative or qualitative data?
Developing a control for an experiment depends on the independent variables being tested. When testing new medication, the control group doesn't receive it. If testing the effect of sunlight on the growth of a flower, the control group of flowers might be grown inside and away from the sun. Here are the steps to take when performing an ...
control group, the standard to which comparisons are made in an experiment.Many experiments are designed to include a control group and one or more experimental groups; in fact, some scholars reserve the term experiment for study designs that include a control group. Ideally, the control group and the experimental groups are identical in every way except that the experimental groups are ...
A control group in a scientific experiment is a group separated from the rest of the experiment, where the independent variable being tested cannot influence the results. This isolates the independent variable's effects on the experiment and can help rule out alternative explanations of the experimental results.
The control group in an experiment is the set of subjects that do not receive the treatment. The control group is the set of subjects that does not receive the treatment in a study. In other words, it is the group where the independent variable is held constant. This is important because the control group is a baseline for measuring the effects of a treatment in an experiment or study.
In a controlled experiment, scientists compare a control group, and an experimental group is identical in all respects except for one difference - experimental manipulation.. Differences. Unlike the experimental group, the control group is not exposed to the independent variable under investigation. So, it provides a baseline against which any changes in the experimental group can be compared.
In an experiment, the control is a standard or baseline group not exposed to the experimental treatment or manipulation.It serves as a comparison group to the experimental group, which does receive the treatment or manipulation. The control group helps to account for other variables that might influence the outcome, allowing researchers to attribute differences in results more confidently to ...
A single experiment may include multiple experimental groups, which may all be compared against the control group. The purpose of having a control is to rule out other factors which may influence the results of an experiment. Not all experiments include a control group, but those that do are called "controlled experiments." A placebo may also ...